openeo_udf.functions package¶
Submodules¶
openeo_udf.functions.datacube_map_fabs module¶
-
openeo_udf.functions.datacube_map_fabs.
hyper_map_fabs
(udf_data: openeo_udf.api.udf_data.UdfData)[source]¶ Compute the absolute values of each hyper cube in the provided data
Parameters: - udf_data (UdfData) -- The UDF data object that contains raster and vector tiles as well as hypercubes
- structured data. (and) --
Returns: This function will not return anything, the UdfData object "udf_data" must be used to store the resulting data.
openeo_udf.functions.datacube_ndvi module¶
-
openeo_udf.functions.datacube_ndvi.
hyper_ndvi
(udf_data: openeo_udf.api.udf_data.UdfData)[source]¶ Compute the NDVI based on RED and NIR hypercubes
Hypercubes with ids "red" and "nir" are required. The NDVI computation will be applied to all hypercube dimensions.
Parameters: - udf_data (UdfData) -- The UDF data object that contains raster and vector tiles as well as hypercubes
- structured data. (and) --
Returns: This function will not return anything, the UdfData object "udf_data" must be used to store the resulting data.
openeo_udf.functions.datacube_pytorch_ml module¶
-
openeo_udf.functions.datacube_pytorch_ml.
hyper_pytorch_ml
(udf_data: openeo_udf.api.udf_data.UdfData)[source]¶ Apply a pre-trained pytorch machine learn model on a hypercube
The model must be a pytorch model that has expects the input data in the constructor The prediction method must accept a torch.autograd.Variable as input.
Parameters: udf_data (UdfData) -- The UDF data object that hypercubes and vector tiles Returns: This function will not return anything, the UdfData object "udf_data" must be used to store the resulting data.
openeo_udf.functions.datacube_reduce_time_mean module¶
-
openeo_udf.functions.datacube_reduce_time_mean.
hyper_mean
(udf_data: openeo_udf.api.udf_data.UdfData)[source]¶ Compute the mean of the time dimension of a hyper cube
Hypercubes with time dimensions are required. The mean reduction of th time axis will be applied to all hypercube dimensions.
Parameters: - udf_data (UdfData) -- The UDF data object that contains raster and vector tiles as well as hypercubes
- structured data. (and) --
Returns: This function will not return anything, the UdfData object "udf_data" must be used to store the resulting data.
openeo_udf.functions.datacube_reduce_time_min_median_max module¶
-
openeo_udf.functions.datacube_reduce_time_min_median_max.
hyper_min_median_max
(udf_data: openeo_udf.api.udf_data.UdfData)[source]¶ Compute the min, median and max of the time dimension of a hyper cube
Hypercubes with time dimensions are required. The min, median and max reduction of th time axis will be applied to all hypercube dimensions.
Parameters: - udf_data (UdfData) -- The UDF data object that contains raster and vector tiles as well as hypercubes
- structured data. (and) --
Returns: This function will not return anything, the UdfData object "udf_data" must be used to store the resulting data.
openeo_udf.functions.datacube_reduce_time_sum module¶
-
openeo_udf.functions.datacube_reduce_time_sum.
hyper_sum
(udf_data: openeo_udf.api.udf_data.UdfData)[source]¶ Compute the sum of the time dimension of a hyper cube
Hypercubes with time dimensions are required. The sum reduction of th time axis will be applied to all hypercube dimensions.
Parameters: - udf_data (UdfData) -- The UDF data object that contains raster and vector tiles as well as hypercubes
- structured data. (and) --
Returns: This function will not return anything, the UdfData object "udf_data" must be used to store the resulting data.
openeo_udf.functions.datacube_sampling module¶
-
openeo_udf.functions.datacube_sampling.
fct_sampling
(udf_data: openeo_udf.api.udf_data.UdfData)[source]¶ Sample any number of raster collection tiles with a single feature collection (the first if several are provided) and store the samples values in the input feature collection. Each time-slice of a raster collection is stored as a separate column in the feature collection. Hence, the size of the feature collection attributes is (number_of_raster_tile * number_of_xy_slices) x number_of_features. The number of columns is equal to (number_of_raster_tile * number_of_xy_slices).
A single feature collection id stored in the input data object that contains the sample attributes and the original data.
Parameters: udf_data (UdfData) -- The UDF data object that contains raster and vector tiles Returns: This function will not return anything, the UdfData object "udf_data" must be used to store the resulting data.
openeo_udf.functions.datacube_sklearn_ml module¶
-
openeo_udf.functions.datacube_sklearn_ml.
rct_sklearn_ml
(udf_data: openeo_udf.api.udf_data.UdfData)[source]¶ Apply a pre-trained sklearn machine learn model on RED and NIR tiles
The model must be a sklearn model that has a prediction method: m.predict(X) The prediction method must accept a pandas.DataFrame as input.
Tiles with ids "red" and "nir" are required. The machine learn model will be applied to all spatio-temporal pixel of the two input raster collections.
Parameters: udf_data (UdfData) -- The UDF data object that contains raster and vector tiles Returns: This function will not return anything, the UdfData object "udf_data" must be used to store the resulting data.
openeo_udf.functions.datacube_statistics module¶
-
openeo_udf.functions.datacube_statistics.
rct_stats
(udf_data: openeo_udf.api.udf_data.UdfData)[source]¶ Compute univariate statistics for each hypercube
Parameters: udf_data (UdfData) -- The UDF data object that contains raster and vector tiles Returns: This function will not return anything, the UdfData object "udf_data" must be used to store the resulting data.
openeo_udf.functions.feature_collections_buffer module¶
-
openeo_udf.functions.feature_collections_buffer.
fct_buffer
(udf_data: openeo_udf.api.udf_data.UdfData)[source]¶ Compute buffer of size 10 around features
This function creates buffer around all features in the provided feature collection tiles. The resulting geopandas.GeoDataFrame contains the new geometries and a copy of the original attribute data.
Parameters: udf_data (UdfData) -- The UDF data object that contains raster and vector tiles Returns: This function will not return anything, the UdfData object "udf_data" must be used to store the resulting data.