Source code for openeo_udf.functions.feature_collections_buffer

# -*- coding: utf-8 -*-
# Uncomment the import only for coding support
# import numpy
# import pandas
# import geopandas
# import torch
# import torchvision
# import tensorflow
# import tensorboard
# from shapely.geometry import Point

from openeo_udf.api.feature_collection import FeatureCollection
from openeo_udf.api.udf_data import UdfData

__license__ = "Apache License, Version 2.0"
__author__ = "Soeren Gebbert"
__copyright__ = "Copyright 2018, Soeren Gebbert"
__maintainer__ = "Soeren Gebbert"
__email__ = "soerengebbert@googlemail.com"


[docs]def fct_buffer(udf_data: UdfData): """Compute buffer of size 10 around features This function creates buffer around all features in the provided feature collection tiles. The resulting geopandas.GeoDataFrame contains the new geometries and a copy of the original attribute data. Args: udf_data (UdfData): The UDF data object that contains raster and vector tiles Returns: This function will not return anything, the UdfData object "udf_data" must be used to store the resulting data. """ fct_list = [] # Iterate over each tile for tile in udf_data.feature_collection_list: # Buffer all features gseries = tile.data.buffer(distance=10) # Create a new GeoDataFrame that includes the buffered geometry and the attribute data new_data = tile.data.set_geometry(gseries) # Create the new feature collection tile fct = FeatureCollection(id=tile.id + "_buffer", data=new_data, start_times=tile.start_times, end_times=tile.end_times) fct_list.append(fct) # Insert the new tiles as list of feature collection tiles in the input object. The new tiles will # replace the original input tiles. udf_data.set_feature_collection_list(fct_list)