openeo_udf.server.data_model package

Submodules

openeo_udf.server.data_model.bounding_box_schema module

class openeo_udf.server.data_model.bounding_box_schema.SpatialBoundingBoxModel[source]

Bases: pydantic.main.BaseModel

Spatial bounding box definitions

openeo_udf.server.data_model.data_collection_schema module

class openeo_udf.server.data_model.data_collection_schema.DataCollectionModel[source]

Bases: pydantic.main.BaseModel

Data collection

class openeo_udf.server.data_model.data_collection_schema.ObjectCollectionModel[source]

Bases: pydantic.main.BaseModel

Object collection that contains data cubes and simple feature collections

class openeo_udf.server.data_model.data_collection_schema.TimeStampsModel[source]

Bases: pydantic.main.BaseModel

The time stamps of the data collections

openeo_udf.server.data_model.datacube_schema module

class openeo_udf.server.data_model.datacube_schema.DataCubeModel[source]

Bases: pydantic.main.BaseModel

A multidimensional representation of a data cube

class openeo_udf.server.data_model.datacube_schema.DimensionModel[source]

Bases: pydantic.main.BaseModel

Description of a data cube dimension. See the STAC dimension definition for more details and examples.

openeo_udf.server.data_model.machine_learn_schema module

class openeo_udf.server.data_model.machine_learn_schema.MachineLearnModel[source]

Bases: pydantic.main.BaseModel

A machine learn model that should be applied to the UDF data.

class Config[source]

Bases: object

schema_extra = {'examples': [{'framework': 'sklearn', 'name': 'random_forest', 'description': 'A random forest model', 'path': '/tmp/model.pkl.xz'}]}

openeo_udf.server.data_model.metadata_schema module

class openeo_udf.server.data_model.metadata_schema.MetadataModel[source]

Bases: pydantic.main.BaseModel

Metadata description of the topological data collection

openeo_udf.server.data_model.model_example_creator module

openeo_udf.server.data_model.model_example_creator.create_data_collection_model_example() → openeo_udf.server.data_model.data_collection_schema.DataCollectionModel[source]
openeo_udf.server.data_model.model_example_creator.create_datacube_model_example() → Tuple[openeo_udf.server.data_model.datacube_schema.DataCubeModel, openeo_udf.server.data_model.variables_collection_schema.VariablesCollectionModel][source]
openeo_udf.server.data_model.model_example_creator.create_dimension_model_example()[source]
openeo_udf.server.data_model.model_example_creator.create_machine_learn_model_example() → openeo_udf.server.data_model.machine_learn_schema.MachineLearnModel[source]
openeo_udf.server.data_model.model_example_creator.create_metadata_model_example() → openeo_udf.server.data_model.metadata_schema.MetadataModel[source]
openeo_udf.server.data_model.model_example_creator.create_object_collection_model_example() → openeo_udf.server.data_model.data_collection_schema.ObjectCollectionModel[source]
openeo_udf.server.data_model.model_example_creator.create_simple_feature_collection_model_example() → Tuple[[openeo_udf.server.data_model.simple_feature_collection_schema.SimpleFeatureCollectionModel, openeo_udf.server.data_model.variables_collection_schema.VariablesCollectionModel], List[str]][source]
openeo_udf.server.data_model.model_example_creator.create_structured_data_model_example() → openeo_udf.server.data_model.structured_data_schema.StructuredDataModel[source]
openeo_udf.server.data_model.model_example_creator.create_timestamp_model_example() → openeo_udf.server.data_model.data_collection_schema.TimeStampsModel[source]
openeo_udf.server.data_model.model_example_creator.create_udf_data_model_example() → openeo_udf.server.data_model.udf_schemas.UdfDataModel[source]
openeo_udf.server.data_model.model_example_creator.create_variable_collection_model_example()[source]

openeo_udf.server.data_model.simple_feature_collection_schema module

class openeo_udf.server.data_model.simple_feature_collection_schema.SimpleFeatureCollectionModel[source]

Bases: pydantic.main.BaseModel

Simple feature collection: (multi)points, (multi)lines or (multi)polygons

class openeo_udf.server.data_model.simple_feature_collection_schema.SimpleFeatureModel[source]

Bases: pydantic.main.BaseModel

A simple feature definition that may contain (multi)points, (multi)lines or (multi)polygons

openeo_udf.server.data_model.structured_data_schema module

class openeo_udf.server.data_model.structured_data_schema.StructuredDataModel[source]

Bases: pydantic.main.BaseModel

This model represents structured data that can not be represented as a RasterCollectionTile or FeatureCollectionTile. For example the result of a statistical computation. The data is self descriptive and supports the basic types dict/map, list and table. This data structure can also be used to provide contextual data from the user to the UDF, like kernel size, resampling pixel size and so on.

openeo_udf.server.data_model.udf_schemas module

class openeo_udf.server.data_model.udf_schemas.ErrorResponseModel[source]

Bases: pydantic.main.BaseModel

The error message. This class is not part of the UDF API but used to create the UDF test server."

class openeo_udf.server.data_model.udf_schemas.UdfCodeModel[source]

Bases: pydantic.main.BaseModel

The object that stores the UDF code and language specification. This class is not part of the UDF API but used to create the UDF test server."

class openeo_udf.server.data_model.udf_schemas.UdfDataModel[source]

Bases: pydantic.main.BaseModel

The UDF data object that stores data cubes, simple feature collection and machine learn models. This object is argument for the UDF as well as their return value.

class openeo_udf.server.data_model.udf_schemas.UdfRequestModel[source]

Bases: pydantic.main.BaseModel

The udf request JSON specification. This class is not part of the UDF API but used to create the UDF test server.

openeo_udf.server.data_model.variables_collection_schema module

class openeo_udf.server.data_model.variables_collection_schema.VariableModel[source]

Bases: pydantic.main.BaseModel

This represents a variable definition with values and labels

class openeo_udf.server.data_model.variables_collection_schema.VariablesCollectionModel[source]

Bases: pydantic.main.BaseModel

A collection of variables that all have the same size

Module contents